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1. CONTEXT
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Application: Interpolation with UQ of Spatio-
Temporal Processes

Source: http://www.ccs.ornl.gov/



Gaussian process regression (kriging): Setup

= Gaussian process (GP): f(z) ~ N (m(x), k(x,z")) -
E{f(z)} = f(z) = m(z)

= Most common: Stationary  k(x,x")=k(x—x") Cov(f(x)) = k(z,2)

= Data (observations)/predictions: ¥y = f(z) +¢ / ys« = f(xx)

= GP joint distribution: [ Y ] NN([ m(X) ] [ K+ ‘ K2 ])
U m(X,) |’ Ky | Ko

= Predictive distribution: v X, X,y =m(X,) + Koy (Kip +3) 7 (y — m(X))
Cov(y.|X,X.,y) = Koz — Koy (K11 + %) Ky
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Gaussian process regression (kriging): inferences

= GP regression or kriging: related to autoregressive models, Kalman filtering

5

(noisy) observations orediction + 20 . = Covariance function (kernel):

K (prq) = K{d) = 0 exp (—%) ,

d= |37p—xq|

1-z v

= Matérn covariance kernel: k(d) = 022 dy'v K, v2dyv
L) \ ¢ (

= Marginal likelihood: P (ylx) = /P(y!f,x)P(f\x) df

1 _ 1
= Log- marginal likelihood: log(P (y|X;0)) = —§yT (Kn(0)+%) "y — 3 log |K11(0) + X
MLE-Il 6 = [02, ¢2,...]7;6* = argmax(log(P (y| X;0)))
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What makes a covariance function acceptable?
Bochner’s theorem (this slide from Rasmussen)

Theorem 4.1 (Bochner’s theorem) A complezx-valued function k on RY is the
covariance function of a weakly stationary mean square continuous complex-
valued random process on RY if and only if it can be represented as

Kr) = [T () (4.5)

where | 1s a positive finite measure. L]

= This defines the spectral density of a covariance process (i.e. its FFT, which must
be real and nonnegative everywhere).

=  Some example processes and densities

Square Exponential Matern Matern 3/2
2

ko) = e (= g)s b = (R o) = (10 ) (<),

(27{62)D/2 exp(—27r2€§.92). S(s) = 9D - D/2F(1(/ ;213/2)(2y) (i_s 2 2) (v+D/2)
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Tasks and challenges

Sampling

Maximum likelihood

Interpolation/Kriging (solving linear system with K)
Regression/Classification (solving linear systems with K)

S:0)= —%YTK‘IY + %YTK‘IH(HTK‘IH)‘IHTKY - %log|K| - %log(Zn)

log(p(J

K=A"A, £~N(0,1), y=M+A&~N(m,K)

A lot of the basic tasks require matrix computations w.r.t. the covariance matrix K
(and most often, Cholesky).

But for 1B data points, you need 8*10718 bytes to store = 8 EXABYTES, so cannot
store K.

How do you do compute log-det and A without storing the covariance matrix? And
Hopefully in O(number data points) operations?

The same challenges appear even outside GPs, as soon as you need to deal with
full correlation.




2. SCALABLE MAXIMUM
LIKELIHOOD CALCULATIONS
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Maximum Likelihood Estimation (MLE)

= A family of covariance functions parameterized by 6: ¢(x; )
=  Maximize the log-likelihood to estimate O:

max L(6) = 1og{(2n)-’“2 (detK) 2 exp(=y"K 'y/ 2)}

1 -, 1 n
=——v K y——log(detK)-—log2m
2y y > g( ) 5 g

= First order optimality: (also known as score equations)

| Q- a1 _
VK@ K0K 1y—5tr[K '(0,K)]=0
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Maximum Likelihood Estimation (MLE)

The log-det term poses a significant challenge for large-scale computations
max —lyTK'ly—llog(detK)—zlog 2r
0 2 2 2

= Cholesky of K: Prohibitively expensive!
= |og(det K) = tr(log K): Need some matrix function methods to handle the log
= No existing method to evaluate the log-det term in sufficient accuracy
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Sample Average Approximation of Maximum
Likelihood Estimation (MLE)

We consider approximately solving the first order optimality instead:

1, N U
EyTK '(9,K)K 1y—§tr[K 1(a].K)]

R SR U (Y _
="K @,K)K y—ﬁgu. [K7(0,K)|u; =0

l

= A randomized trace estimator tr(A) = E[uTAu]
— U hasi.i.d. entries taking £1 with equal probability

= As N tends to infinity, the solution approaches the true estimate

= The variance introduced in approximating the trace is comparable with the
variance of the sampley
— So the approximation does not lose too much accuracy

= Numerically, one must solve linear systems with O(N) right-hand sides.
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Stochastic Approximation of Trace

=  When entries of u are i.i.d. with mean zero and covariance |

tr(A)=E, [uTAu]

= The estimator has a variance
T 4 2 1 2
var {u" Au} = 3 (E[u]-1) 4] +§E(Aij +A,)
i i=]
= |f each entry of u takes £1 with equal probability, the variance is the smallest

Var{uTAu} = %E(Aij +A,)

i=j
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Convergence of Stochastic Programming - SAA

" let 6 : truth

A

0 : sol of %yTK‘l(ajK)K‘ly—%tr[K'l(ajK)] =0

N . _1 T -1 -1 1 < T[ -1 _
6" : sol of F—Ey K™(9,K)K y—ﬁ;u. [K (ajK)]u,._o

= First result:

[V "2@" -0) —2— standard normal, V" =[J¥T"=V[J"]"

where . A
J"=VF@") and =" =cov{F(0")}

= Note: 2N decreases in O(N1)
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Simu

lation: We scale

= Truth ©=[7, 10], Maternv=1.5

11
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“Optimal” Convergence

" let 6 : truth

A

0 : sol of %yTK‘l(ajK)K‘ly—%tr[K'l(ajK)] =0

l

N . _1 T -1 -1 1 < T[ -1 _
6" : sol of F—Ey K™(9,K)K y—ﬁ;u. [K (ajK)]u,._o

=  Second result:

C @ -0) —2— standard normal, C=A"BA™

where 1
—-A =1, Fisher matrix and B=1+ m]

J<]. [cond(K)+1]°
= Note:Jhasabound cond(K) ,soCconvergestol*in O(N?)if
condition number of K is bounded.
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3. LINEAR ALGEBRA:
PRECONDITIONING
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LINEAR ALGEBRA CHALLENGES: PRECONDITIONING
AND MATRIX VECTOR MULTIPLICATIONS

We reduced max likelihood calculations to solving linear systems with K.

We next focus on the linear algebra:

=  Preconditioning K

= Matrix-vector multiplication with K

= Solving linear system w.r.t. K with multiple right-hand sides
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Covariance Model

=  Matern covariance function

1 4 x

¢(x)=2H—F(v)( 2W’)V KV( 2vr) where r = —L

— v: Example values 0.5, 1, 1.5, 2
— 0O: Scale parameters to estimate
— K, is the modified Bessel function of the second kind of order v

=  Commonly used in spatial/temporal data modeling.

= The parameter v is used to model the data with a certain level of smoothness.
=  When v -> oo, the kernel is the Gaussian kernel.

=  Spectral density

d
f(w)oc(zv+p2)—(v+d/2) where p= \/E(ijj)z
j=1
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Why the Matern Kernel?

= In machine learning, people tend to use the square exponential kernel a lot.

= This assumes that all realizations are infinitely smooth, a fact rarely supported by
data, especially high resolution data.

= The Matern Kernel allows one to adjust smoothness.

= The resulting covariance matrix is dense, compared to compact Kernels, but the
likelihood surface is much smoother.

1500
1000
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-500

-1000-L
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(a) Compact kernel. (b) Matern kernel.
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Condition Number

K is increasingly ill-conditioned.

tO -1 t—n+2 t—n+1-
tl to t_l t—n+2
t1 to
tn—2 -1
tn-1 tpn—2 - i1 to |

Co

C1

= More can be done by considering filtering

Cn—1

Co

C1

If the grid is in a fixed, finite domain C RY, then cond(K) = O(n2v/d+1)

Cn—1

Co

C2

C1

On regular grid, K is (multi-level) Toeplitz, hence a circulant preconditioner applies

C1

C2

Cn—1

Co
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Condition Number

Filtering (1D): if f(w)w? bounded away from 0 and oo as w -> oo
Let0<xp <X .. X, ST, dj=%—X 4,

Y =[Z(x)=Z(x )/ Jd;, KV =cov{Y, 7"}

Then KW has a bounded condition number independent of n

Filtering (1D): if f(w)w*bounded away from 0 and oo as w -> oo

@ _ Z(xj+1)—Z(xj) ~ Z(xj)—Z(xj_l)
"o 2d,\d, +d;  2d[d,, +d,

Jj+l

KP(j.D=cov{Y?. 1>}

Then K@ has a bounded condition number independent of n
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Condition Number

= Filtering (high dimension, regular grid): if f(w) is asymptotically (1+|w])*

d
AZ(x;)= EZ(xj —0e,)=2Z(x;)+Z(x; +0e,)

p=1

K'™(j,l) = cov{A™Z(x;),A"Z(x,)}

» Then K[ has a bounded condition number independent of n

= Use thefilter as a preconditioner

[ e T ] (]

In 2D, L is the 5-point stencil matrix with rows w.r.t. the grid boundary removed.

= Similarly for the filters in the preceding slide
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Condition Number

» Effect of filtering (K" can be further preconditioned by circulant preconditioner)

8

10

—
o
)

condition number
o

-©-K
—+—K preconditioned
—e—Kl1]

-kl preconditioned

10°

10" 10° 10
matrix dimension n

6
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Block CG

= Preconditioned Conjugate Gradient (M is preconditioner)

Ax=D>

Xjn =X;+A;P;

’}+1 =7, _-(Z’Iquj
pj+1 ]+1 + ﬁ p]
where

a;=r, "M, /pJApJ

b =r. Mr, /rTMr.

j+l j+l

AX =B (block version)

X,=X,+Pq,
R. =R.—AP.a.
j+1 (MR]+1 +Pﬁ ))/]+1
where
a,=(P/AP)"'y; (R MR))
B;=v;'(R_MR))"(R,,MR.,)

j+l
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Block CG

= (G, block CG, and the preconditioned versions using circulant preconditioner
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Experimental Results

= Combined effect of circulant preconditioning and filtering
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3.1 PHYSICS-INSPIRED
“PROBLEM”
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Stokes Flow

(a) Pressure field (b) Filtered pressure field in log-scale
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Stokes Flow

Fitted a power-law model ~ #(x;a,C) = [(-a/2)-C|[*

Data Circle Rectangle Boundary Background

Fitted a 0.1819 0.3051 0.7768 1.5945

eig(Fisher1)1/2 5.04e-4 9.80e-4 2.50e-3 8.11e-4

: 1.0283 1.0289

A(V-

v ,\(( 1—1)) 1.0284 1.0284
1.0010 1.0009

N ——
Q_._ %0




Conclusion GP

State-of-the-art methods use Cholesky to do sampling and solve ML.
— Can probably handle data size up to n = 0(10%) or O(10°).

We propose a framework to overcome the Cholesky barrier.
— Use a matrix-free method to do sampling.
— Reformulate maximum likelihood using stochastic approximation.
— Use iterative solver to solve linear systems.
— Use a filtering technique to reduce the condition number.

On going work
— Investigating the scaling of parallel FFT for n = O(10°) and larger computations.
— For scattered points, investigating a discrete Laplace operator for filtering.
— Implementing a fast summation method to do mat-vec.

Details: ScalaGauss project web site.
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